

Home Search Collections Journals About Contact us My IOPscience

'True' self-avoiding Levy flights

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1985 J. Phys. A: Math. Gen. 18 L755 (http://iopscience.iop.org/0305-4470/18/13/004)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 08:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

'True' self-avoiding Lévy flights

Zhang Yi-Cheng[†] and Luca Peliti[‡]

[†] Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
[‡] Dipartimento di Fisica, Università 'La Sapienza', Piazzale Aldo Moro 2, I-00185 Roma, Italy and GNSM-CNR, Unità di Roma, Italy

Received 1 July 1985

Abstract. We consider 'true' self-avoiding Lévy flights, defined by a probability decreasing like $r^{-\sigma}$ of making a step of length larger than r, with a tendency to avoid already visited sites. The predictions of a Flory argument for the upper critical dimension and for the exponent of the gyration radius appear to be in disagreement with those of a renormalised field theory.

The equilibrium statistics of self-avoiding Lévy flights, where the probability of a step being of greater length than some r decreases like $r^{-\sigma}$ ($0 < \sigma < 2$), has been recently considered by Grassberger (1985). While this problem is purely static, it may be simulated by a process much in the same way as the equilibrium statistics of a self-repelling chain is simulated by a self-avoiding walk, where the walker is suppressed if it tries to retrace its steps.

A variation on the theme of self-avoiding walks is the 'true' self-avoiding walk (Amit *et al* 1983). In this model, if a walker attempts to retrace its steps, instead of being suppressed, is deviated to sites not yet (or less often) visited. We have considered this variation on a Lévy flight by means both of a Flory argument and of field theoretical considerations. While for all other instances both lines of argument agree in the location of the upper critical dimension d_c —and the Flory argument appears as a reliable guide for the value of the gyration radius exponent ν below d_c —we find a disagreement in their predictions for this model.

We obtain in fact

(i) from the Flory argument:

$$d_{c} = \sigma; \qquad \begin{array}{c} \nu = 1/\sigma & d > d_{c} \\ \nu = 2(d + \sigma) & d < d_{c}; \end{array}$$
(1)

(ii) from field theory:

$$d_{\rm c} = 2(\sigma - 1), \qquad \nu = 1/\sigma \qquad \forall d. \tag{2}$$

The prediction of field theory is that the asymptotic behaviour of the flight for d less than d_c is different from that of a non-interacting Lévy flight, although the critical exponent ν does not change.

We now expound the arguments leading to equations (1) and (2). Equation (1) derives from a Flory argument adapted to kinetic processes (Family and Daoud 1984, Family 1984). One has a repelling potential proportional to N/R^d instead of N^2/R^d as in the self-avoiding Lévy flight case. The entropy term is taken to be R^{σ}/N

0305-4470/85/130755+02\$02.25 © 1985 The Institute of Physics

(Grassberger 1985). Minimising the free energy with respect to R we obtain $R \sim N^{\nu}$ where

$$\nu_{\rm F} = 2/(d+\sigma). \tag{3}$$

The upper critical dimension is identified by the condition that ν is equal to its 'free' value $1/\sigma$.

The field theoretical formulation follows from standard techniques (Grassberger and Scheunert 1980). One obtains the action:

$$S = \int \mathrm{d}t \int \mathrm{d}^{d}\mathbf{r} \bigg[\tilde{\psi} \bigg(-\frac{\partial \psi}{\partial t} + D\nabla^{\sigma}\psi \bigg) - g\tilde{\psi}\nabla\psi \cdot \nabla \int_{0}^{t} \mathrm{d}t'\tilde{\psi}(t')\psi(t') \bigg].$$
(4)

One easily sees from power counting that the dimension of the coupling constant g is given by $2(\sigma - 1) - d$, which identifies the upper critical dimension given by (2). On the other hand one finds no diagrams renormalising the $\bar{\psi}\nabla^{\sigma}\psi$ term in the free Lagrangian (a similar property also holds in the equilibrium case: see e.g. Fisher *et al* 1972). We thus obtain, exactly to all orders in perturbation theory:

$$2 - \eta = \sigma. \tag{5}$$

From the fact that $\gamma = 1$, due to probability conservation, and from the scaling relation $\gamma/\nu = 2 - \eta$, the estimation in (2) follows. It is possible that one is witnessing a breakdown of scaling due to the presence of a 'dangerous' irrelevant operator.

One can also consider 'true' self-avoiding Lévy flights with long-range repelling potentials (Peliti and Zhang 1985, Zhang 1985). The potential is then taken to be:

$$\phi(\mathbf{r}) = \int d^d \mathbf{r}' \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^{\omega}}.$$
(6)

A similar Flory argument yields

$$\nu = 2/(\omega + \sigma)$$
 for $\omega < \sigma$. (7)

In particular, for repelling Coulomb interactions ($\omega = d - 2$) we obtain

$$\nu = 2/(d+\sigma-2),\tag{8}$$

which gives in turn

$$d_{\rm c} = \sigma + 2. \tag{9}$$

This work was done while Zhang Y-C was visiting the Department of Physics, Università 'La Sapienza', Rome. He would like to thank the Department and the Istituto Nazionale di Fisica Nucleare, Sezione di Roma, for hospitality.

References

Amit D J, Parisi G and Peliti L 1983 Phys. Rev. B 27 1635 Family F 1984 J. Stat. Phys. 36 881 Family F and Daoud M 1984 Phys. Rev. B 29 1506 Fisher M K, Ma S K and Nickel B 1972 Phys. Rev. Lett. 29 917 Grassberger P 1985 J. Phys. A: Math. Gen. 18 L463 Grassberger P and Scheunert M 1980 Fortschr. Phys. 28 547 Peliti L and Zhang Y-C 1985 Preprint Rome Zhang Y-C 1985 Preprint Brookhaven